Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 77
Filtrar
1.
Antibiotics (Basel) ; 13(4)2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38666976

RESUMO

The development of new and effective antimicrobial compounds is urgent due to the emergence of resistant bacteria. Natural plant flavonoids are known to be effective molecules, but their activity and selectivity have to be increased. Based on previous aurone potency, we designed new aurone derivatives bearing acetamido and amino groups at the position 5 of the A ring and managing various monosubstitutions at the B ring. A series of 31 new aurone derivatives were first evaluated for their antimicrobial activity with five derivatives being the most active (compounds 10, 12, 15, 16, and 20). The evaluation of their cytotoxicity on human cells and of their therapeutic index (TI) showed that compounds 10 and 20 had the highest TI. Finally, screening against a large panel of pathogens confirmed that compounds 10 and 20 possess large spectrum antimicrobial activity, including on bioweapon BSL3 strains, with MIC values as low as 0.78 µM. These results demonstrate that 5-acetamidoaurones are far more active and safer compared with 5-aminoaurones, and that benzyloxy and isopropyl substitutions at the B ring are the most promising strategy in the exploration of new antimicrobial aurones.

2.
J Biomed Sci ; 31(1): 18, 2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38287360

RESUMO

BACKGROUND: Mycobacterium abscessus, a fast-growing non-tuberculous mycobacterium, is an emerging opportunistic pathogen responsible for chronic bronchopulmonary infections in people with respiratory diseases such as cystic fibrosis (CF). Due to its intrinsic polyresistance to a wide range of antibiotics, most treatments for M. abscessus pulmonary infections are poorly effective. In this context, antimicrobial peptides (AMPs) active against bacterial strains and less prompt to cause resistance, represent a good alternative to conventional antibiotics. Herein, we evaluated the effect of three arenicin isoforms, possessing two or four Cysteines involved in one (Ar-1, Ar-2) or two disulfide bonds (Ar-3), on the in vitro growth of M. abscessus. METHODS: The respective disulfide-free AMPs, were built by replacing the Cysteines with alpha-amino-n-butyric acid (Abu) residue. We evaluated the efficiency of the eight arenicin derivatives through their antimicrobial activity against M. abscessus strains, their cytotoxicity towards human cell lines, and their hemolytic activity on human erythrocytes. The mechanism of action of the Ar-1 peptide was further investigated through membrane permeabilization assay, electron microscopy, lipid insertion assay via surface pressure measurement, and the induction of resistance assay. RESULTS: Our results demonstrated that Ar-1 was the safest peptide with no toxicity towards human cells and no hemolytic activity, and the most active against M. abscessus growth. Ar-1 acts by insertion into mycobacterial lipids, resulting in a rapid membranolytic effect that kills M. abscessus without induction of resistance. CONCLUSION: Overall, the present study emphasized Ar-1 as a potential new alternative to conventional antibiotics in the treatment of CF-associated bacterial infection related to M. abscessus.


Assuntos
Fibrose Cística , Infecções por Mycobacterium não Tuberculosas , Mycobacterium abscessus , Poliestirenos , Humanos , Infecções por Mycobacterium não Tuberculosas/tratamento farmacológico , Antibacterianos/farmacologia , Fibrose Cística/tratamento farmacológico , Fibrose Cística/microbiologia , Peptídeos/farmacologia , Testes de Sensibilidade Microbiana
3.
FEBS Open Bio ; 13(12): 2306-2323, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37872001

RESUMO

Mycobacterium tuberculosis (Mtb), the aetiologic agent of tuberculosis (TB), stores triacylglycerol (TAG) in the form of intrabacterial lipid inclusions (ILI) to survive and chronically persist within its host. These highly energetic molecules represent a major source of carbon to support bacterial persistence and reactivation, thus playing a leading role in TB pathogenesis. However, despite its physiological and clinical relevance, ILI metabolism in Mtb remains poorly understood. Recent discoveries have suggested that several ILI-associated proteins might be widely conserved across TAG-producing prokaryotes, but still very little is known regarding the nature and the biological functions of these proteins. Herein, we performed an in silico analysis of three independent ILI-associated proteomes previously reported to computationally define a potential core ILI-associated proteome, referred to as ILIome. Our investigation revealed the presence of 70 orthologous proteins that were strictly conserved, thereby defining a minimal ILIome core. We further narrowed our analysis to proteins involved in lipid metabolism and discuss here their putative biological functions, along with their molecular interactions and dynamics at the surface of these bacterial organelles. We also highlight the experimental limitations of the original proteomic investigations and of the present bioinformatic analysis, while describing new technological approaches and presenting biological perspectives in the field. The in silico investigation presented here aims at providing useful datasets that could constitute a scientific resource of broad interest for the mycobacterial community, with the ultimate goal of enlightening ILI metabolism in prokaryotes with a special emphasis on Mtb pathogenesis.


Assuntos
Actinobacteria , Mycobacterium tuberculosis , Humanos , Proteômica , Metabolismo dos Lipídeos , Triglicerídeos/metabolismo
4.
Antibiotics (Basel) ; 12(1)2023 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-36671321

RESUMO

Cystic fibrosis (CF) is associated with repeated lung bacterial infection, mainly by Pseudomonas aeruginosa, Staphylococcus aureus, and Mycobacterium abscessus, all known to be or becoming resistant to several antibiotics, often leading to therapeutic failure and death. In this context, antimicrobial peptides and antimicrobial polymers active against resistant strains and less prompt to cause resistance, appear as a good alternative to conventional antibiotics. In the present study, methacrylate-based copolymers obtained by radical chemistry were evaluated against CF-associated bacterial strains. Results showed that the type (Random versus Diblock) and the size of the copolymers affected their antibacterial activity and toxicity. Among the different copolymers tested, four (i.e., Random10200, Random15000, Random23900, and Diblock9500) were identified as the most active and the safest molecules and were further investigated. Data showed that they inserted into bacterial lipids, leading to a rapid membranolytic effect and killing of the bacterial. In relation with their fast bactericidal action and conversely to conventional antibiotics, those copolymers did not induce a resistance and remained active against antibiotic-resistant strains. Finally, the selected copolymers possessed a preventive effect on biofilm formation, although not exhibiting disruptive activity. Overall, the present study demonstrates that methacrylate-based copolymers are an interesting alternative to conventional antibiotics in the treatment of CF-associated bacterial infection.

5.
Int J Mol Sci ; 24(2)2023 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-36675258

RESUMO

The type VI secretion system (T6SS) delivers enzymatic effectors into target cells to destroy them. Cells of the same strain protect themselves against effectors with immunity proteins that specifically inhibit effectors. Here, we report the identification and characterization of a Tle3 phospholipase effector and its cognate immunity protein Tli3-an outer membrane lipoprotein from adherent-invasive Escherichia coli (AIEC). Enzymatic assays demonstrate that purified Tle3AIEC has a phospholipase A1, and not A2, activity and that its toxicity is neutralized by the cognate immunity protein Tli3AIEC. Tli3AIEC binds Tle3 in a 1:1 stoichiometric ratio. Tle3AIEC, Tli3AIEC and the Tle3AIEC-Tli3AIEC complex were purified and subjected to crystallization. The Tle3AIEC-Tli3AIEC complex structure could not be solved by SeMet phasing, but only by molecular replacement when using an AlphaFold2 prediction model. Tle3AIEC exhibits an α/ß-hydrolase fold decorated by two protruding segments, including a N-terminus loop. Tli3AIEC displays a new fold of three stacked ß-sheets and a protruding loop that inserts in Tle3AIECcatalytic crevice. We showed, experimentally, that Tle3AIEC interacts with the VgrG AIEC cargo protein and AlphaFold2 prediction of the VgrGAIEC-Tle3AIEC complex reveals a strong interaction between the VgrGAIEC C-terminus adaptor and Tle3AIEC N-terminal loop.


Assuntos
Infecções por Escherichia coli , Sistemas de Secreção Tipo VI , Humanos , Escherichia coli/metabolismo , Sistemas de Secreção Tipo VI/metabolismo , Proteínas de Bactérias/metabolismo , Aderência Bacteriana , Proteínas Correpressoras/metabolismo
6.
FEBS J ; 290(6): 1563-1582, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36197115

RESUMO

A hallmark of Mycobacterium tuberculosis (M. tb), the aetiologic agent of tuberculosis, is its ability to metabolise host-derived lipids. However, the enzymes and mechanisms underlying such metabolism are still largely unknown. We previously reported that the Cyclophostin & Cyclipostins (CyC) analogues, a new family of potent antimycobacterial molecules, react specifically and covalently with (Ser/Cys)-based enzymes mostly involved in bacterial lipid metabolism. Here, we report the synthesis of new CyC alkyne-containing inhibitors (CyCyne ) and their use for the direct fishing of target proteins in M. tb culture via bio-orthogonal click-chemistry activity-based protein profiling (CC-ABPP). This approach led to the capture and identification of a variety of enzymes, and many of them involved in lipid or steroid metabolisms. One of the captured enzymes, HsaD (Rv3569c), is required for the survival of M. tb within macrophages and is thus a potential therapeutic target. This prompted us to further explore and validate, through a combination of biochemical and structural approaches, the specificity of HsaD inhibition by the CyC analogues. We confirmed that the CyC bind covalently to the catalytic Ser114 residue, leading to a total loss of enzyme activity. These data were supported by the X-ray structures of four HsaD-CyC complexes, obtained at resolutions between 1.6 and 2.6 Å. The identification of mycobacterial enzymes directly captured by the CyCyne probes through CC-ABPP paves the way to better understand and potentially target key players at crucial stages of the bacilli life cycle.


Assuntos
Antituberculosos , Proteínas de Bactérias , Hidrolases , Simulação de Acoplamento Molecular , Mycobacterium tuberculosis , Compostos Organofosforados , Humanos , Antituberculosos/síntese química , Antituberculosos/farmacologia , Antituberculosos/uso terapêutico , Macrófagos/microbiologia , Mycobacterium tuberculosis/efeitos dos fármacos , Mycobacterium tuberculosis/enzimologia , Tuberculose/tratamento farmacológico , Proteínas de Bactérias/antagonistas & inibidores , Proteínas de Bactérias/química , Compostos Organofosforados/química , Cristalografia por Raios X , Hidrolases/antagonistas & inibidores , Hidrolases/química , Simulação por Computador
7.
ACS Infect Dis ; 8(12): 2564-2578, 2022 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-36379042

RESUMO

Patients with cystic fibrosis (CF) have a significantly higher risk of acquiring nontuberculous mycobacteria infections, predominantly due to Mycobacterium abscessus, than the healthy population. Because M. abscessus infections are a major cause of clinical decline and morbidity in CF patients, improving treatment and the detection of this mycobacterium in the context of a polymicrobial culture represents a critical component to better manage patient care. We report here the synthesis of fluorescent Dansyl derivatives of four active cyclipostins and cyclophostin analogues (CyCs) and provide new insights regarding the CyC's lack of activity against Gram-negative and Gram-positive bacteria, and above all into their mode of action against intramacrophagic M. abscessus cells. Our results pointed out that the intracellularly active CyC accumulate in acidic compartments within macrophage cells, that this accumulation appears to be essential for their delivery to mycobacteria-containing phagosomes, and consequently, for their antimicrobial effect against intracellular replicating M. abscessus, and that modification of such intracellular localization via disruption of endolysosomal pH strongly affects the CyC accumulation and efficacy. Moreover, we discovered that these fluorescent compounds could become efficient probes to specifically label mycobacterial species with high sensitivity, including M. abscessus in the presence several other pathogens like Pseudomonas aeruginosa and Staphylococcus aureus. Collectively, all present and previous data emphasized the therapeutic potential of unlabeled CyCs and the attractiveness of the fluorescent CyC as a potential new efficient diagnostic tool to be exploited in future diagnostic developments against mycobacterial-related infections, especially against M. abscessus.

8.
Microbiol Spectr ; 10(3): e0019222, 2022 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-35583329

RESUMO

The immunoglobulin A (IgA) status of cystic fibrosis (CF) patients, presenting with or without a non-tuberculous mycobacterial (NTM) infection, has to date not been fully elucidated toward two antigenic preparations previously described. We have chosen to determine the clinical values of an IgA ELISA for the diagnosis of NTM and/or Mycobacterium abscessus infections in CF patients. One hundred and 73 sera from CF patients, comprising 33 patients with M. abscessus positive cultures, and 31 non-CF healthy controls were assessed. IgA levels were evaluated by indirect ELISAs using a surface antigenic extract named TLR2eF for TLR2 positive extract and a recombinant protein, the phospholipase C (rMAB_0555 or rPLC). These assays revealed a sensitivity of 52.6% (95% CI = 35.8% to 69%) and 42.1% (95% CI = 26.3% to 59.2%) using TLR2eF and rPLC, respectively, and respective specificities of 92.6% (95% CI = 87.5% to 96.1%) and 92% (95% CI = 86.7% to 95.7%) for samples culture positive for M. abscessus. Overall sensitivity and specificity of 66.7% and 85.4%, respectively, were calculated for IgA detection in M. abscessus-culture positive CF patients, when we combine the results of the two used antigens, thus demonstrating the efficiency in detection of positive cases for these two antigens with IgA isotype. CF patients with a positive culture for M. abscessus had the highest IgA titers against TLR2eF and rPLC. The diagnosis of NTM infections, including those due to M. abscessus, can be improved by the addition of an IgA serological assay, especially when cultures, for example, are negative. Based on these promising results, a serological follow-up of a larger number of patients should be performed to determine if the IgA response may be correlated with an active/acute infection state or a very recent infection. IMPORTANCE Mycobacterium abscessus is currently the most frequently isolated rapid growing mycobacterium in human pathology and the major one involved in lung infections. It has recently emerged as responsible for severe pulmonary infections in patients with cystic fibrosis (CF) or those who have undergone lung transplantation. In addition, it represents the most antibiotic resistant mycobacterial species. However, despite its increasing clinical importance, very little is known about the use of M. abscessus parietal compounds and the host response. This has led to the development of serological tests to measure the antibody response in infected patients, and potentially to link this to the culture of respiratory samples. Herein, we describe an important analysis of the serological IgA response from CF patients, and we demonstrate the full diagnostic usefulness of this assay in the diagnosis of NTM infections, and more particularly M. abscessus, in CF patients.


Assuntos
Fibrose Cística , Infecções por Mycobacterium não Tuberculosas , Mycobacterium abscessus , Mycobacterium , Fibrose Cística/complicações , Fibrose Cística/microbiologia , Humanos , Imunoglobulina A , Infecções por Mycobacterium não Tuberculosas/diagnóstico , Infecções por Mycobacterium não Tuberculosas/microbiologia , Mycobacterium abscessus/fisiologia , Micobactérias não Tuberculosas
9.
Neuropsychopharmacology ; 47(11): 1901-1912, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35396500

RESUMO

Atypical responses to sensory stimuli are considered as a core aspect and early life marker of autism spectrum disorders (ASD). Although recent findings performed in mouse ASD genetic models report sensory deficits, these were explored exclusively during juvenile or adult period. Whether sensory dysfunctions might be present at the early life stage and rescued by therapeutic strategy are fairly uninvestigated. Here we found that under cool environment neonatal mice lacking the autism-associated gene Magel2 present pup calls hypo-reactivity and are retrieved with delay by their wild-type dam. This neonatal atypical sensory reactivity to cool stimuli was not associated with autonomic thermoregulatory alteration but with a deficit of the oxytocinergic system. Indeed, we show in control neonates that pharmacogenetic inactivation of hypothalamic oxytocin neurons mimicked atypical thermosensory reactivity found in Magel2 mutants. Furthermore, pharmacological intranasal administration of oxytocin to Magel2 neonates was able to rescue both the atypical thermosensory response and the maternal pup retrieval. This preclinical study establishes for the first-time early life impairments in thermosensory integration and suggest a therapeutic potential benefit of intranasal oxytocin treatment on neonatal atypical sensory reactivity for autism.


Assuntos
Transtorno Autístico , Hipestesia , Comportamento Materno , Ocitocina , Proteínas , Administração Intranasal , Fatores Etários , Animais , Antígenos de Neoplasias/genética , Antígenos de Neoplasias/metabolismo , Transtorno do Espectro Autista/complicações , Transtorno Autístico/complicações , Transtorno Autístico/genética , Transtorno Autístico/metabolismo , Fármacos do Sistema Nervoso Central/administração & dosagem , Fármacos do Sistema Nervoso Central/metabolismo , Feminino , Hipestesia/etiologia , Hipestesia/genética , Hipestesia/metabolismo , Hipotálamo/efeitos dos fármacos , Hipotálamo/metabolismo , Comportamento Materno/fisiologia , Camundongos , Ocitocina/administração & dosagem , Ocitocina/metabolismo , Proteínas/genética , Proteínas/metabolismo , Comportamento Social
10.
Bioorg Med Chem Lett ; 64: 128692, 2022 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-35307568

RESUMO

With the aim to discover new antituberculous molecules, three novel series of 23 hydroxamic acids, 13 hydrazides, and 9O-alkyl/O-acyl protected hydroxamic acid derivatives have been synthesized, and fully characterized by spectral 1H NMR, 13C NMR, HRMS) analysis. These compounds were further biologically screened for their in vitro antibacterial activities against three pathogenic mycobacteria - M. abscessus S and R, M. marinum, and M. tuberculosis - as well as for their toxicity towards murine macrophages by the resazurin microtiter assay (REMA). Among the 45 derivatives, 17 compounds (3 hydroxamic acids, 9 hydrazides, and 5O-alkyl/O-acyl protected hydroxamic acids) were nontoxic against murine macrophages. When tested for their antibacterial activity, hydroxamic acid 9 h was found to be the most potent inhibitor against M. abscessus S and R only. Regarding hydrazide series, only 7h was active against M. abscessus R, M. marinum and M. tuberculosis; while the O-acyl protected hydroxamic acid derivatives 14d and 15d displayed promising antibacterial activity against both M. marinum and M. tuberculosis. Since such hydroxamic- and hydrazide-chelating groups have been reported to impair the activity of the peptide deformylase, in silico molecular docking studies in M. tuberculosis peptide deformylase enzyme active site were further performed with 7h in order to predict the possible interaction mode and binding energy of this molecule at the molecular level.


Assuntos
Ácidos Hidroxâmicos , Mycobacterium tuberculosis , Animais , Antibacterianos/química , Hidrazinas/farmacologia , Ácidos Hidroxâmicos/química , Camundongos , Testes de Sensibilidade Microbiana , Simulação de Acoplamento Molecular , Relação Estrutura-Atividade
11.
J Cyst Fibros ; 21(2): 353-360, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34511392

RESUMO

BACKGROUND: Culture conditions sometimes make it difficult to detect non-tuberculous mycobacteria (NTM), particularly Mycobacterium abscessus, an emerging cystic fibrosis (CF) pathogen. The diagnosis of NTM positive cases not detected by classical culture methods might benefit from the development of a serological assay. METHODS: As part of a diagnostic accuracy study, a total of 173 sera CF-patients, including 33 patients with M. abscessus positive cultures, and 31 non-CF healthy controls (HC) were evaluated. Four M. abscessus antigens were used separately, comprising two surface extracts (Interphase (INP) and a TLR2 positive extract (TLR2eF)) and two recombinant proteins (rMAB_2545c and rMAB_0555 also known as the phospholipase C (rPLC)). RESULTS: TLR2eF and rPLC were the most efficient antigens to discriminate NTM-culture positive CF-patients from NTM-culture negative CF-patients. The best clinical values were obtained for the detection of M. abscessus-culture positive CF-patients; with sensitivities for the TLR2eF and rPLC of 81.2% (95% CI:65.7-92.3%) and 87.9% (95% CI:71.9-95.6%) respectively, and specificities of 88.9% (95% CI:85.3-94.8%) and 84.8% (95% CI:80.6-91.5%) respectively. When considering as positive all sera, giving a positive response in at least one of the two tests, and, as negative, all sera negative for both tests, we obtained a sensitivity of 93.9% and a specificity of 80.7% for the detection of M. abscessus-culture positive CF-patients. CONCLUSION: High antibody titers against TLR2eF and rPLC were obtained in M. abscessus-culture positive CF-patients, allowing us to consider these serological markers as potential tools in the detection of CF-patients infected with M. abscessus.


Assuntos
Fibrose Cística , Infecções por Mycobacterium não Tuberculosas , Mycobacterium abscessus , Biomarcadores , Fibrose Cística/complicações , Fibrose Cística/diagnóstico , Humanos , Infecções por Mycobacterium não Tuberculosas/diagnóstico , Micobactérias não Tuberculosas
12.
Cell Chem Biol ; 29(5): 883-896.e5, 2022 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-34599873

RESUMO

The identification and validation of a small molecule's targets is a major bottleneck in the discovery process for tuberculosis antibiotics. Activity-based protein profiling (ABPP) is an efficient tool for determining a small molecule's targets within complex proteomes. However, how target inhibition relates to biological activity is often left unexplored. Here, we study the effects of 1,2,3-triazole ureas on Mycobacterium tuberculosis (Mtb). After screening ∼200 compounds, we focus on 4 compounds that form a structure-activity series. The compound with negligible activity reveals targets, the inhibition of which is functionally less relevant for Mtb growth and viability, an aspect not addressed in other ABPP studies. Biochemistry, computational docking, and morphological analysis confirms that active compounds preferentially inhibit serine hydrolases with cell wall and lipid metabolism functions and that disruption of the cell wall underlies biological activity. Our findings show that ABPP identifies the targets most likely relevant to a compound's antibacterial activity.


Assuntos
Mycobacterium tuberculosis , Tuberculose , Antituberculosos/química , Antituberculosos/farmacologia , Parede Celular , Humanos , Proteoma
13.
Virulence ; 12(1): 1438-1451, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34107844

RESUMO

Mycobacterium ulcerans is the causal agent of Buruli ulcer, a chronic infectious disease and the third most common mycobacterial disease worldwide. Without early treatment, M. ulcerans provokes massive skin ulcers, caused by the mycolactone toxin, its main virulence factor. However, spontaneous healing may occur in Buruli ulcer patients several months or years after the disease onset. We have shown, in an original mouse model, that bacterial load remains high and viable in spontaneously healed tissues, with a switch of M. ulcerans to low levels of mycolactone production, adapting its strategy to survive in such a hostile environment. This original model offers the possibility to investigate the regulation of mycolactone production, by using an RNA-seq strategy to study bacterial adaptation during mouse infection. Pathway analysis and characterization of the tissue environment showed that the bacillus adapted to its new environment by modifying its metabolic activity and switching nutrient sources. Thus, M. ulcerans ensures its survival in healing tissues by reducing its secondary metabolism, leading to an inhibition of mycolactone synthesis. These findings shed new light on mycolactone regulation and pave the way for new therapeutic strategies.


Assuntos
Úlcera de Buruli , Macrolídeos/metabolismo , Infecções por Mycobacterium , Mycobacterium ulcerans , Adaptação Biológica , Animais , Úlcera de Buruli/microbiologia , Regulação Bacteriana da Expressão Gênica , Humanos , Camundongos , Infecções por Mycobacterium/microbiologia , Mycobacterium ulcerans/genética
14.
FEMS Microbiol Rev ; 45(6)2021 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-34036305

RESUMO

Mycobacterial species, including Mycobacterium tuberculosis, rely on lipids to survive and chronically persist within their hosts. Upon infection, opportunistic and strict pathogenic mycobacteria exploit metabolic pathways to import and process host-derived free fatty acids, subsequently stored as triacylglycerols in the form of intrabacterial lipid inclusions (ILI). Under nutrient-limiting conditions, ILI constitute a critical source of energy that fuels the carbon requirements and maintain redox homeostasis, promoting bacterial survival for extensive periods of time. In addition to their basic metabolic functions, these organelles display multiple other biological properties, emphasizing their central role in the mycobacterial life cycle. However, despite their importance, the dynamics of ILI metabolism and their contribution to mycobacterial adaptation/survival in the context of infection has not been thoroughly documented. Herein, we provide an overview of the historical ILI discoveries, their characterization and current knowledge regarding the microenvironmental stimuli conveying ILI formation, storage and degradation. We also review new biological systems to monitor the dynamics of ILI metabolism in extra- and intracellular mycobacteria and describe major molecular actors in triacylglycerol biosynthesis, maintenance and breakdown. Finally, emerging concepts regarding the role of ILI in mycobacterial survival, persistence, reactivation, antibiotic susceptibility and inter-individual transmission are also discussed.


Assuntos
Mycobacterium tuberculosis , Lipídeos , Triglicerídeos
15.
Eur J Med Chem ; 209: 112908, 2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-33071055

RESUMO

Tuberculosis (TB) caused by Mycobacterium tuberculosis (M. tb) still remains the deadliest infectious disease worldwide with 1.5 million deaths in 2018, of which about 15% are attributed to resistant strains. Another significant example is Mycobacterium abscessus (M. abscessus), a nontuberculous mycobacteria (NTM) responsible for cutaneous and pulmonary infections, representing up to 95% of NTM infections in cystic fibrosis (CF) patients. M. abscessus is a new clinically relevant pathogen and is considered one of the most drug-resistant mycobacteria for which standardized chemotherapeutic regimens are still lacking. Together the emergence of M. tb and M. abscessus multi-drug resistant strains with ineffective and expensive therapeutics, have paved the way to the development of new classes of anti-mycobacterial agents offering additional therapeutic options. In this context, specific inhibitors of mycobacterial lipolytic enzymes represent novel and promising antibacterial molecules to address this challenging issue. The results highlighted here include a complete overview of the antibacterial activities, either in broth medium or inside infected macrophages, of two families of promising and potent anti-mycobacterial multi-target agents, i.e. oxadiazolone-core compounds (OX) and Cyclophostin & Cyclipostins analogs (CyC); the identification and biochemical validation of their effective targets (e.g., the antigen 85 complex and TesA playing key roles in mycolic acid metabolism) together with their respective crystal structures. To our knowledge, these are the first families of compounds able to target and impair replicating as well as intracellular bacteria. We are still impelled in deciphering their mode of action and finding new potential therapeutic targets against mycobacterial-related diseases.


Assuntos
Antituberculosos/química , Inibidores Enzimáticos/química , Mycobacterium tuberculosis/efeitos dos fármacos , Compostos Organofosforados/química , Tuberculose/tratamento farmacológico , Antituberculosos/farmacologia , Hidrolases de Éster Carboxílico/antagonistas & inibidores , Desenho de Fármacos , Inibidores Enzimáticos/farmacologia , Humanos , Lactonas/farmacologia , Testes de Sensibilidade Microbiana , Ácidos Micólicos/metabolismo , Compostos Organofosforados/farmacologia , Orlistate/farmacologia , Tuberculose Resistente a Múltiplos Medicamentos
16.
Artigo em Inglês | MEDLINE | ID: mdl-32984067

RESUMO

Mycobacterium abscessus is a prevalent pathogenic mycobacterium in cystic fibrosis (CF) patients and one of the most highly drug resistant mycobacterial species to antimicrobial agents. It possesses the property to transition from a smooth (S) to a rough (R) morphotype, thereby influencing the host innate immune response. This transition from the S to the R morphotype takes place in patients with an exacerbation of the disease and a persistence of M. abscessus. We have previously shown that the exacerbation of the Toll-like receptor 2 (TLR2)-mediated inflammatory response, following this S to R transition, is essentially due to overproduction of bacilli cell envelope surface compounds, which we were able to extract by mechanical treatment and isolation by solvent partition in a fraction called interphase. Here, we set up a purification procedure guided by bioactivity to isolate a fraction from the R variant of M. abscessus cells which exhibits a high TLR2 stimulating activity, referred to as TLR2-enriched fraction (TLR2eF). As expected, TLR2eF was found to contain several lipoproteins and proteins known to be stimuli for TLR2. Vaccination with TLR2eF showed no protection toward an M. abscessus aerosol challenge, but provided mild protection in ΔF508 mice and their FVB littermates when intravenously challenged by M. abscessus. Interestingly however, antibodies against TLR2eF compounds were detected during disease in CF patients. In conclusion, we show the potential for compounds in TLR2eF as vaccine and diagnostic candidates, in order to enhance diagnosis, prevent and/or treat M. abscessus-related infections.


Assuntos
Infecções por Mycobacterium não Tuberculosas , Mycobacterium abscessus , Mycobacterium , Vacinas , Animais , Humanos , Camundongos , Infecções por Mycobacterium não Tuberculosas/diagnóstico , Infecções por Mycobacterium não Tuberculosas/prevenção & controle , Receptor 2 Toll-Like
17.
PLoS One ; 15(9): e0238178, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32946441

RESUMO

Mycobacterium abscessus (M. abscessus), a rapidly growing mycobacterium, is an emergent opportunistic pathogen responsible for chronic bronchopulmonary infections in individuals with respiratory diseases such as cystic fibrosis. Most treatments of M. abscessus pulmonary infections are poorly effective due to the intrinsic resistance of this bacteria against a broad range of antibiotics including anti-tuberculosis agents. Consequently, the number of drugs that are efficient against M. abscessus remains limited. In this context, 19 oxadiazolone (OX) derivatives have been investigated for their antibacterial activity against both the rough (R) and smooth (S) variants of M. abscessus. Several OXs impair extracellular M. abscessus growth with moderated minimal inhibitory concentrations (MIC), or act intracellularly by inhibiting M. abscessus growth inside infected macrophages with MIC values similar to those of imipenem. Such promising results prompted us to identify the potential target enzymes of the sole extra and intracellular inhibitor of M. abscessus growth, i.e., compound iBpPPOX, via activity-based protein profiling combined with mass spectrometry. This approach led to the identification of 21 potential protein candidates being mostly involved in M. abscessus lipid metabolism and/or in cell wall biosynthesis. Among them, the Ag85C protein has been confirmed as a vulnerable target of iBpPPOX. This study clearly emphasizes the potential of the OX derivatives to inhibit the extracellular and/or intracellular growth of M. abscessus by targeting various enzymes potentially involved in many physiological processes of this most drug-resistant mycobacterial species.


Assuntos
Antibacterianos/química , Antibacterianos/farmacologia , Mycobacterium abscessus/efeitos dos fármacos , Oxidiazóis/química , Oxidiazóis/farmacologia , Animais , Espaço Extracelular/efeitos dos fármacos , Espaço Extracelular/microbiologia , Espaço Intracelular/efeitos dos fármacos , Espaço Intracelular/microbiologia , Camundongos , Testes de Sensibilidade Microbiana , Mycobacterium abscessus/crescimento & desenvolvimento , Células RAW 264.7
18.
EMBO J ; 39(11): e104129, 2020 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-32350888

RESUMO

The bacterial type VI secretion system (T6SS) is a macromolecular machine that injects effectors into prokaryotic and eukaryotic cells. The mode of action of the T6SS is similar to contractile phages: the contraction of a sheath structure pushes a tube topped by a spike into target cells. Effectors are loaded onto the spike or confined into the tube. In enteroaggregative Escherichia coli, the Tle1 phospholipase binds the C-terminal extension of the VgrG trimeric spike. Here, we purify the VgrG-Tle1 complex and show that a VgrG trimer binds three Tle1 monomers and inhibits their activity. Using covalent cross-linking coupled to high-resolution mass spectrometry, we provide information on the sites of contact and further identify the requirement for a Tle1 N-terminal secretion sequence in complex formation. Finally, we report the 2.6-Å-resolution cryo-electron microscopy tri-dimensional structure of the (VgrG)3 -(Tle1)3 complex revealing how the effector binds its cargo, and how VgrG inhibits Tle1 phospholipase activity. The inhibition of Tle1 phospholipase activity once bound to VgrG suggests that Tle1 dissociation from VgrG is required upon delivery.


Assuntos
Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Fosfolipases/metabolismo , Sistemas de Secreção Tipo VI/metabolismo , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Fosfolipases/genética , Sistemas de Secreção Tipo VI/genética
19.
FEBS Lett ; 594(1): 79-93, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31388991

RESUMO

Phthiocerol dimycocerosates and phenolic glycolipids (PGL) are considered as major virulence elements of Mycobacterium tuberculosis, in particular because of their involvement in cell wall impermeability and drug resistance. The biosynthesis of these waxy lipids involves multiple enzymes, including thioesterase A (TesA). We observed that purified recombinant M. tuberculosis TesA is able to dimerize in the presence of palmitoyl-CoA and our 3D structure model of TesA with this acyl-CoA suggests hydrophobic interaction requirement for dimerization. Furthermore, we identified that methyl arachidonyl fluorophosphonate, which inhibits TesA by covalently modifying the catalytic serine, also displays a synergistic antimicrobial activity with vancomycin further warranting the development of TesA inhibitors as valuable antituberculous drug candidates.


Assuntos
Ácidos Araquidônicos/farmacologia , Proteínas de Bactérias/antagonistas & inibidores , Farmacorresistência Bacteriana , Inibidores Enzimáticos/farmacologia , Mycobacterium tuberculosis/enzimologia , Organofosfonatos/farmacologia , Tioléster Hidrolases/antagonistas & inibidores , Vancomicina/farmacologia , Antibacterianos/farmacologia , Proteínas de Bactérias/metabolismo , Domínio Catalítico , Simulação de Acoplamento Molecular , Mycobacterium tuberculosis/efeitos dos fármacos , Ligação Proteica , Multimerização Proteica , Tioléster Hidrolases/química , Tioléster Hidrolases/metabolismo
20.
Mar Drugs ; 17(9)2019 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-31470685

RESUMO

Antimicrobial peptides (AMPs) are natural antibiotics produced by all living organisms. In metazoans, they act as host defense factors by eliminating microbial pathogens. But they also help to select the colonizing bacterial symbionts while coping with specific environmental challenges. Although many AMPs share common structural characteristics, for example having an overall size between 10-100 amino acids, a net positive charge, a γ-core motif, or a high content of cysteines, they greatly differ in coding sequences as a consequence of multiple parallel evolution in the face of pathogens. The majority of AMPs is specific of certain taxa or even typifying species. This is especially the case of annelids (ringed worms). Even in regions with extreme environmental conditions (polar, hydrothermal, abyssal, polluted, etc.), worms have colonized all habitats on Earth and dominated in biomass most of them while co-occurring with a large number and variety of bacteria. This review surveys the different structures and functions of AMPs that have been so far encountered in annelids and nematodes. It highlights the wide diversity of AMP primary structures and their originality that presumably mimics the highly diverse life styles and ecology of worms. From the unique system that represents marine annelids, we have studied the effect of abiotic pressures on the selection of AMPs and demonstrated the promising sources of antibiotics that they could constitute.


Assuntos
Antibacterianos/metabolismo , Peptídeos Catiônicos Antimicrobianos/metabolismo , Helmintos/metabolismo , Aminoácidos/metabolismo , Animais , Antibacterianos/farmacologia , Peptídeos Catiônicos Antimicrobianos/farmacologia , Bactérias/efeitos dos fármacos , Ecossistema , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA